Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Arq Gastroenterol ; 61: e23100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511793

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) and metabolic-dysfunction associated steatotic liver disease (MASLD) are common, and gut microbiota (GM) is involved with both. Here we compared GM composition in animal models of MASLD and ALD to assess whether there are specific patterns for each disease. METHODS: MASLD model- adult male Sprague Dawley rats, randomized into two groups: MASLD-control (n=10) fed a standard diet; MASLD-group (n=10) fed a high-fat-choline-deficient diet for 16 weeks. ALD model- adult male Wistar rats randomized: ALD-control (n=8) fed a standard diet and water+0.05% saccharin, ALD groups fed with sunflower seed and 10% ethanol+0.05% saccharin for 4 or 8 weeks (ALC4, n=8; ALC8, n=8). ALC4/8 on the last day received alcoholic binge (5g/kg of ethanol). Afterwards, animals were euthanized, and feces were collected for GM analysis. RESULTS: Both experimental models induced typical histopathological features of the diseases. Alpha diversity was lower in MASLD compared with ALD (p<0.001), and structural pattern was different between them (P<0.001). Bacteroidetes (55.7%), Firmicutes (40.6%), and Proteobacteria (1.4%) were the most prevalent phyla in all samples, although differentially abundant among groups. ALC8 had a greater abundance of the phyla Cyanobacteria (5.3%) and Verrucomicrobiota (3.2%) in relation to the others. Differential abundance analysis identified Lactobacillaceae_unclassified, Lachnospiraceae_NK4A136_group, and Turicibacter associated with ALC4 and the Clostridia_UCG_014_ge and Gastranaerophilales_ge genera to ALC8. CONCLUSION: In this study, we demonstrated that the structural pattern of the GM differs significantly between MASLD and ALD models. Studies are needed to characterize the microbiota and metabolome in both clinical conditions to find new therapeutic strategies. BACKGROUND: •Changes in the composition of the intestinal microbiota are related to the development of alcoholic liver disease and metabolic-dysfunction associated steatotic liver disease. BACKGROUND: •The diversity of the intestinal microbiota was lower in animals with MASLD compared to ALD. BACKGROUND: •The structural pattern of the intestinal microbiota was significantly different among the experimental groups. BACKGROUND: •Studies are needed to characterize the composition of the intestinal microbiota and metabolome to find new therapeutic strategies.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Ratos , Animais , Masculino , Sacarina , Ratos Sprague-Dawley , Modelos Animais de Doenças , Ratos Wistar , Hepatopatias Alcoólicas/microbiologia , Etanol
2.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930723

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is a chronic liver injury caused by excessive alcohol consumption, could be impacted by gut-liver axis dysfunction. The gut microbiota plays a crucial role in the development and progression of ALD. Given the role of gut-liver axis dysfunction in ALD, strategies targeting gut microbiota modulation have gained interest for therapeutic interventions. Bifidobacterium longum subsp. longum BL21 has shown promise in alleviating gut microbiota disturbances and metabolic regulation in high-fat diet-induced obesity and type 2 diabetes mellitus models. Thus, this study aimed to evaluate the therapeutic effect of BL21 on ALD mice and explore the potential mechanism by which the gut microbiota mediates the amelioration of ALD by BL21. METHODS: A total of 30 mice were randomly assigned to three groups (n = 10 mice/group): a healthy control (CTL) group, an ALD group, and a BL21 group. Each group was fed a Lieber-DeCarli liquid diet with (ALD and BL21) or without alcohol (CTL). The intervention period lasted 6 weeks, after which the effects of BL21 intervention (intragastric administration of 1 billion CFU of BL21 daily) on serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, hepatic oxidative stress, serum inflammatory cytokine levels, and gut microbiota composition in ALD mice were investigated. RESULTS: Dietary BL21 reduced the ethanol-induced abnormal elevation of serum AST and ALT levels in ALD mice (P < 0.001 for both). BL21 treatment significantly attenuated alcohol-induced hepatic oxidative stress by decreasing malondialdehyde concentration and increasing superoxide dismutase, catalase, and glutathione concentrations in the livers of ALD mice. In addition, the serum levels of tumor necrosis factor-alpha, interleukin-1 beta (IL-1ß), and IL-6 were significantly lower (P < 0.001 for both), while that of IL-10 was significantly higher (P < 0.05), in the BL21 group than in the ALD group. Intestinal microbiota analysis showed an increased relative abundance of Escherichia/Shigella, Enterococcus, and Alistipes in the ALD group compared with the CTL group. BL21 intervention increased the relative abundance of Bifidobacterium and Akkermansia compared with the ALD group. CONCLUSION: Dietary BL21 ameliorates ALD via enhancement of the hepatic antioxidant capacity and modulation of the gut microbiota and may therefore be a promising strategy to prevent or treat ALD.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Animais , Antioxidantes/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Fígado , Bifidobacterium , Etanol/metabolismo , Camundongos Endogâmicos C57BL
3.
Front Biosci (Landmark Ed) ; 28(2): 23, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36866546

RESUMO

BACKGROUND: Ganoderma lucidum spore powder (GLSP) has abundant pharmacological activities. However, the difference in the hepatoprotective function of sporoderm-broken and sporoderm-unbroken Ganoderma spore powder has not been studied. This study is the first to investigate the effects of both sporoderm-damaged and sporoderm-intact GLSP on the improvement of acute alcoholic liver injury in mice and gut microbiota of mice. METHODS: Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and interleukin 1ß (IL-1ß), interleukin 18 (IL-18), and tumor necrosis factor-α (TNF-α) levels in liver tissues from mice in each group were detected by enzyme-linked immunosorbent assay (ELISA) kits, and histological analysis of liver tissue sections was performed to evaluate the liver-protecting effects of both sporoderm-broken and sporoderm-unbroken GLSP. Additionally, 16S rDNA sequencing of feces from the bowels of mice was performed to compare the regulatory effects of both sporoderm-broken and sporoderm-unbroken GLSP on the gut microbiota of mice. RESULTS: Compared with those in the 50% ethanol model group (MG), sporoderm-broken GLSP significantly reduced serum AST and ALT levels (p < 0.0001) and the release of the inflammatory factors, including IL-1ß, IL-18, and TNF-α (p < 0.0001), and effectively improved the pathological state of liver cells; sporoderm-unbroken GLSP significantly reduced the ALT content (p = 0.0002) and the release of the inflammatory factors, including IL-1ß (p < 0.0001), IL-18 (p = 0.0018), and TNF-α (p = 0.0005), and reduced the serum AST content, but the reduction was not significant; compared with the gut microbiota of the MG, sporoderm-broken GLSP reduced the levels of Verrucomicrobia and Escherichia_Shigella, increased the relative abundance of beneficial bacteria such as Bacteroidetes, and decreased the abundance levels of harmful bacteria, such as Proteobacteria and Candidatus_Saccharibacteria; sporoderm-unbroken GLSP could reduce the abundance levels of harmful bacteria, such as Verrucomicrobia and Candidatus_Saccharibacteria; and GLSP treatment alleviates the downregulation of the levels of translation, ribosome structure and biogenesis, and lipid transport and metabolism in liver-injured mice; Conclusions: GLSP can alleviate the imbalance of gut microbiota and improve liver injury, and the effect of sporoderm-broken GLSP is better.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Reishi , Animais , Camundongos , Interleucina-18 , Fígado , Pós , Esporos Fúngicos , Fator de Necrose Tumoral alfa , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/terapia
4.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768785

RESUMO

Microbiome alterations are emerging as one of the most important factors that influence the course of alcohol use disorder (AUD). Recent advances in bioinformatics enable more robust and accurate characterization of changes in the composition of the microbiome. In this study, our objective was to provide the most comprehensive and up-to-date evaluation of microbiome alterations associated with AUD and alcoholic liver disease (ALD). To achieve it, we have applied consistent, state of art bioinformatic workflow to raw reads from multiple 16S rRNA sequencing datasets. The study population consisted of 122 patients with AUD, 75 with ALD, 54 with non-alcoholic liver diseases, and 260 healthy controls. We have found several microbiome alterations that were consistent across multiple datasets. The most consistent changes included a significantly lower abundance of multiple butyrate-producing families, including Ruminococcaceae, Lachnospiraceae, and Oscillospiraceae in AUD compared to HC and further reduction of these families in ALD compared with AUD. Other important results include an increase in endotoxin-producing Proteobacteria in AUD, with the ALD group having the largest increase. All of these alterations can potentially contribute to increased intestinal permeability and inflammation associated with AUD and ALD.


Assuntos
Alcoolismo , Microbioma Gastrointestinal , Lactobacillales , Hepatopatias Alcoólicas , Microbiota , Humanos , Alcoolismo/genética , Alcoolismo/microbiologia , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Hepatopatias Alcoólicas/microbiologia , Lactobacillales/genética , Fígado/microbiologia
5.
Hepatol Commun ; 7(2): e0029, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706195

RESUMO

Chronic alcohol consumption is associated with intestinal fungal dysbiosis, yet we understand little about how alterations of intestinal fungi (mycobiota) contribute to the pathogenesis of alcohol-associated liver disease. By reanalyzing internal transcribed spacer 2 amplicon sequencing of fecal samples from a cohort of 66 patients with alcohol use disorder for presence (as opposed to relative abundance) of fungal species, we observed that the presence of Malassezia restricta was associated with increased markers of liver injury. M. restricta exacerbates ethanol-induced liver injury both in acute binge and chronic ethanol-feeding models in mice. Using bone marrow chimeric mice, we found that the disease exacerbating effect by M. restricta was mediated by C-type lectin domain family 4, member N on bone marrow-derived cells. M. restricta induces inflammatory cytokines and chemokines in Kupffer cells through C-type lectin domain family 4, member N signaling. Targeting fungal pathobionts might be a therapeutic strategy for alcohol-associated liver disease.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/efeitos adversos , Hepatopatias Alcoólicas/microbiologia , Lectinas Tipo C/genética
6.
Nutrition ; 106: 111888, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36436334

RESUMO

OBJECTIVES: Alcoholic liver disease (ALD) is the leading cause of alcohol-related deaths worldwide. Experimental ALD models are expensive and difficult to reproduce. A low-cost, reproducible ALD model was developed, and liver damage compared with the gut microbiota. The aims of this study were to develop an experimental model of ALD, through a high-fat diet, the chronic use of ethanol, and intragastric alcohol binge; and to evaluate the composition of the gut microbiota and its correlation with markers of inflammatory and liver disease progression in this model. METHODS: Adult male Wistar rats were randomized (N = 24) to one of three groups: control (standard diet and water + 0.05% saccharin), ALC4 and ALC8 (sunflower seed, 10% ethanol + 0.05% saccharin for 4 and 8 wk, respectively). On the last day, ALC4/8 received alcoholic binge (5 g/kg). Clinical, nutritional, biochemical, inflammatory, pathologic, and gut microbiota data were analyzed. RESULTS: ALC4/8 animals consumed more alcohol and lipids (P < 0.01) and less total energy, liquids, solids, carbohydrates, and proteins (P < 0.01), and gained less weight (P < 0.01) than controls. ALC8 had lower Lee index scores than controls and ALC4 (P < 0.01). Aminotransferases increased and albumin diminished in ALC4/8 but not in the control group (P < 0.03 for all). Glucose and aspartate transaminase/alanine aminotransaminase ratios were higher in the ALC8 rats than in the controls (P < 0.03). Cholesterol was higher in ALC4 and lower in ALC8 compared with controls (P < 0.03). Albumin and high-density lipoprotein cholesterol levels were lower in ALC8 (P < 0.03). Hepatic concentration of triacylglycerols was higher in ALC8 than in ALC4 and controls (P < 0.05). ALC4/8 presented microvesicular grade 2 and 3 steatosis, respectively, and macrovesicular grade 1. No change in the gene expression of inflammatory markers between groups was seen. ALC4/8 had lower fecal bacterial α-diversity and relative abundance of Firmicutes (P < 0.005) and greater Bacterioidetes (P < 0.0007) and Protobacteria (P < 0.001) than controls. Gut microbiota correlated with serum and liver lipids, steatosis, albumin, and aminotransferases (P < 0.01 for all). CONCLUSION: The model induced nutritional, biochemical, histologic, and gut microbiota changes, and appears to be useful in the study of therapeutic targets.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Ratos , Masculino , Animais , Microbioma Gastrointestinal/genética , Sacarina/metabolismo , Ratos Wistar , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Fígado/metabolismo , Etanol/metabolismo , Fígado Gorduroso/metabolismo , Transaminases/metabolismo , Lipídeos
7.
Nanotheranostics ; 6(4): 365-375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795340

RESUMO

Liver diseases are responsible for over 2 million deaths each year and the number is rapidly increasing. There is a strong link between edibles, gut microbiota, liver fat and the liver damage. There are very limited therapeutic options for treatment specifically for Alcoholic liver disease (ALD) and Non-Alcoholic liver disease (NAFLD). Recently, identified Edible Exosomes-like nanoparticles (ELNs) are plant derived membrane bound particles, released by microvesicular bodies for cellular communication and regulate immune responses against many pathogens. Many studies have identified their role as hepatoprotective agent as they carry bioactive material as cargoes which are transferred to recipient cells and affect various biological functions in liver. They are also known to carry specific miRNA, which increases the copy number of beneficial bacteria and the production of lactic acid metabolites in gut and hence restrains from liver injury through portal vein. Few in-vitro studies also have been reported about the anti-inflammatory, anti-oxidant and detoxification properties of ELNs which again protects the liver. The properties such as small size, biocompatibility, stability, low toxicity and non-immunogenicity make ELNs as a better therapeutic option. But, till now, studies on the effect of ELNs as therapeutics are still at its infancy yet promising. Here we discuss about the isolation, characterization, their role in maintaining the gut microbiome and liver homeostasis. Also, we give an outline about the latest advances in ELNs modifications, its biological effects, limitations and we propose the future prospective of ELNs as therapeutics.


Assuntos
Exossomos , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Nanopartículas , Humanos , Hepatopatias Alcoólicas/microbiologia
8.
Cells ; 11(2)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053298

RESUMO

A considerable percentage of the population is affected by alcoholic liver disease (ALD). It is characterized by inflammatory signals from the liver and other organs, such as the intestine. The NLR family pyrin domain containing 6 (NLRP6) inflammasome complex is one of the most important inflammatory mediators. The aim of this study was to evaluate a novel mouse model for ALD characterized by 8-week chronic-plus-binge ethanol administration and to investigate the role of NLRP6 inflammasome for intestinal homeostasis and ALD progression using Nlrp6-/- mice. We showed that chronic-plus-binge ethanol administration triggers hepatic steatosis, injury, and neutrophil infiltration. Furthermore, we discovered significant changes of intestinal microbial communities, including increased relative abundances of bacteria within the phyla Bacteroidota and Campilobacterota, as well as reduced Firmicutes. In this ALD model, inhibiting NLRP6 signaling had no effect on liver steatosis or damage, but had a minor impact on intestinal homeostasis via affecting intestinal epithelium function and gut microbiota. Surprisingly, Nlrp6 loss resulted in significantly decreased hepatic immune cell infiltration. As a result, our novel mouse model encompasses several aspects of human ALD, such as intestinal dysbiosis. Interfering with NLRP6 inflammasome activity reduced hepatic immune cell recruitment, indicating a disease-aggravating role of NLRP6 during ALD.


Assuntos
Transtorno da Compulsão Alimentar/metabolismo , Transtorno da Compulsão Alimentar/patologia , Progressão da Doença , Inflamassomos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Receptores de Superfície Celular/metabolismo , Consumo de Bebidas Alcoólicas , Animais , Transtorno da Compulsão Alimentar/microbiologia , Ceco/microbiologia , Doença Crônica , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Microbioma Gastrointestinal , Mucosa Intestinal/patologia , Fígado/lesões , Fígado/patologia , Hepatopatias Alcoólicas/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Receptores de Superfície Celular/deficiência , Transdução de Sinais
9.
Hepatol Commun ; 6(1): 133-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558855

RESUMO

Alcohol-associated liver disease (ALD) is a significant clinical problem for which the most effective therapy is alcohol abstinence. The two aims of this study were, first, to identify the liver transcriptome, fecal microbiome, and portal serum metabolome at peak injury and during early and late resolution from ALD; and second, to integrate their interactions and understand better the pathogenesis of ALD. To provoke alcohol-induced liver injury, female and male wild-type mice were fed the control or ethanol Lieber-DeCarli diets for 6 weeks. To study early and late resolution, alcohol was withdrawn from the diet and mice were sacrificed after 3 and 14 days, respectively. At peak injury, there was increased signal transducer and activator of transcription (Stat3), Rho-GTPases, Tec kinase and glycoprotein VI (Gp6), and decreased peroxisome proliferator-activated receptor signaling. During resolution from ALD, there was up-regulation of vitamin D receptor/retinoid X receptor, toll-like receptor, p38 and Stat3, and down-regulation of liver X receptor signaling. Females showed significant changes in catabolic pathways, whereas males increased cellular stress, injury, and immune-response pathways that decreased during resolution. The bacterial genus Alistipes and the metabolite dipeptide glycyl-L-leucine increased at peak but decreased during resolution from ALD in both genders. Hepatic induction of mitogen-activated protein kinase (Map3k1) correlated with changes in the microbiome and metabolome at peak but was restored during ALD resolution. Inhibition of MAP3K1 protected from ALD in mice. Conclusion: Alcohol abstinence restores the liver transcriptome, fecal microbiome, and portal serum metabolome in a gender-specific manner. Integration of multiomics data identified Map3k1 as a key gene driving pathogenesis and resolution from ALD.


Assuntos
Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Metaboloma , Microbiota , Transcriptoma , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Fezes/microbiologia , Feminino , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/microbiologia , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Regulação para Cima
10.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884492

RESUMO

Chronic alcohol consumption and alcohol-associated liver disease (ALD) represent a major public health problem worldwide. Only a minority of patients with an alcohol-use disorder (AUD) develop severe forms of liver disease (e.g., steatohepatitis and fibrosis) and finally progress to the more advanced stages of ALD, such as severe alcohol-associated hepatitis and decompensated cirrhosis. Emerging evidence suggests that gut barrier dysfunction is multifactorial, implicating microbiota changes, alterations in the intestinal epithelium, and immune dysfunction. This failing gut barrier ultimately allows microbial antigens, microbes, and metabolites to translocate to the liver and into systemic circulation. Subsequent activation of immune and inflammatory responses contributes to liver disease progression. Here we review the literature about the disturbance of the different host defense mechanisms linked to gut barrier dysfunction, increased microbial translocation, and impairment of liver and systemic inflammatory responses in the different stages of ALD.


Assuntos
Disbiose/patologia , Microbioma Gastrointestinal , Hepatopatias Alcoólicas/complicações , Animais , Disbiose/microbiologia , Humanos , Hepatopatias Alcoólicas/microbiologia
11.
Nat Commun ; 12(1): 7172, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887405

RESUMO

Complement receptor of immunoglobulin superfamily (CRIg) is expressed on liver macrophages and directly binds complement component C3b or Gram-positive bacteria to mediate phagocytosis. CRIg plays important roles in several immune-mediated diseases, but it is not clear how its pathogen recognition and phagocytic functions maintain homeostasis and prevent disease. We previously associated cytolysin-positive Enterococcus faecalis with severity of alcohol-related liver disease. Here, we demonstrate that CRIg is reduced in liver tissues from patients with alcohol-related liver disease. CRIg-deficient mice developed more severe ethanol-induced liver disease than wild-type mice; disease severity was reduced with loss of toll-like receptor 2. CRIg-deficient mice were less efficient than wild-type mice at clearing Gram-positive bacteria such as Enterococcus faecalis that had translocated from gut to liver. Administration of the soluble extracellular domain CRIg-Ig protein protected mice from ethanol-induced steatohepatitis. Our findings indicate that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of liver disease.


Assuntos
Enterococcus faecalis/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Hepatopatias Alcoólicas/imunologia , Macrófagos/imunologia , Receptores de Complemento 3b/imunologia , Receptores de Complemento/imunologia , Animais , Translocação Bacteriana , Complemento C3b/imunologia , Enterococcus faecalis/fisiologia , Etanol/efeitos adversos , Feminino , Trato Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/microbiologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento 3b/genética
12.
Sci Rep ; 11(1): 22811, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819599

RESUMO

Camel milk (CM) is considered to protect the liver in the practice of traditional medicine in nomadic areas. The purpose of the present study was to investigate the effects of CM on the hepatic biochemical and multiple omics alterations induced by chronic alcoholic liver disease (ALD). An intragastric gavage mice Lieber DeCarli + Gao binge model (NIAAA model) was employed to investigate the inflammatory mechanism of camel milk on the liver tissue of mice. A gut microbiota of the feces of mice and transcriptomic and proteomic analyses of the liver of mice were performed. Analysis of serum and liver biochemical indexes revealed that camel milk not only prevents alcohol-induced colonic dysfunction and lipid accumulation, but also regulates oxidative stress and inflammatory cytokine production to protect against chronic ALD in mouse. The gut microbial community of mice treated with camel milk was more similar to the untreated control group than to the model group, indicating that the intake of camel milk pre- and post-alcohol gavage effectively prevents and alleviates the intestinal microbial disorder caused by chronic alcoholism in mice. Furthermore, the results of the transcriptomic and proteomic analyses of the liver tissue showed that camel milk can improve alcoholic liver injury in mice by regulating inflammatory factors and immune system disruptions. This study provides insights into the molecular mechanism by which camel milk can be developed as a potential functional food with no side effects and against liver injury.


Assuntos
Anti-Inflamatórios/administração & dosagem , Camelus , Mediadores da Inflamação/metabolismo , Intestinos/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Fígado/metabolismo , Leite , Animais , Consumo Excessivo de Bebidas Alcoólicas , Modelos Animais de Doenças , Disbiose , Alimento Funcional , Microbioma Gastrointestinal , Intestinos/imunologia , Intestinos/microbiologia , Metabolismo dos Lipídeos , Fígado/imunologia , Fígado/patologia , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteoma , Transcriptoma
13.
Gut Microbes ; 13(1): 1984122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34711112

RESUMO

Intestinal microbiota, dominated by bacteria, plays an important role in the occurrence and the development of alcohol-associated liver disease (ALD), which is one of the most common liver diseases around the world. With sufficient studies focusing on the gut bacterial community, chronic alcohol consumption is now known as a key factor that alters the composition of gut bacterial community, increases intestinal permeability, causes intestinal dysfunction, induces bacterial translocation, and exacerbates the process of ALD via gut-liver axis. However, gut non-bacterial communities including fungi, viruses, and archaea, which may also participate in the disease, has received little attention relative to the gut bacterial community. This paper will systematically collect the latest literatures reporting non-bacterial communities in mammalian health and disease, and review their mechanisms in promoting the development of ALD including CLEC7A pathway, Candidalysin (a peptide toxin secreted by Candida albicans), metabolites, and other chemical substances secreted or regulated by gut commensal mycobiome, virome, and archaeome, hoping to bring novel insights on our current knowledge of ALD.


Assuntos
Etanol/efeitos adversos , Microbioma Gastrointestinal , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/virologia , Animais , Archaea/classificação , Archaea/efeitos dos fármacos , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/genética , Fungos/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Vírus/classificação , Vírus/efeitos dos fármacos , Vírus/genética , Vírus/isolamento & purificação
14.
Mol Nutr Food Res ; 65(18): e2100253, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331394

RESUMO

SCOPE: Lactoferrin (Lf) possess a protective potential to liver, but whether it can prevent alcoholic liver injury (ALI) remains unclear. METHODS AND RESULTS: Four groups of male C57BL/6J mice are fed with different diets, namely, AIN-93G diet for control (CON) and ethanol (EtOH) groups, and AIN-93G diet with 0.4% and 4% casein replaced by Lf for low-dose Lf (LLf) and high-dose Lf (HLf) groups, respectively. ALI is induced by giving 20% ethanol ad libitum combined with four "binges". Lf can remarkably decrease EtOH-induced mortality. Lf promotes aldehyde dehydrogenase-2 (ALDH2) expression and suppressing cytochrome P450 2E1 (CYP2E1) overexpression, resulting in the reduced hepatic superoxide and inflammation levels, which ultimately leads to the hepatic injury alleviation. However, HLf increases acetyl-CoA carboxylase and fatty acid synthase protein levels, which suggests that excessive intake may weaken the beneficial effects of Lf. Moreover, LLf increases the relative abundances of Akkermansia and Lactobacillus. Additionally, the study shows that Lf likely exerts action in its digestive product forms rather than intact Lf molecular in normal condition. CONCLUSION: LLf can ameliorate ALI, which is associated with the regulation of hepatic alcohol metabolism and the modulation of gut microbiota. However, excessive Lf intake may result in a diminished benefit.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Lactoferrina/farmacologia , Hepatopatias Alcoólicas/prevenção & controle , Fígado/efeitos dos fármacos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Bovinos , Citocromo P-450 CYP2E1/metabolismo , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Jejuno/patologia , Lactoferrina/administração & dosagem , Lactoferrina/farmacocinética , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/mortalidade , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacocinética , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Biol Macromol ; 182: 968-976, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887288

RESUMO

The objective of this study was to evaluate the molecular mechanism by which polysaccharides from Crassostrea gigas (RPS) prevent alcoholic liver injury and to uncover whether the steaming process affects the bioactivities of RPS. Oral administration of RPS or polysaccharides from steamed oyster (SPS) (282 mg/kg b.w.) significantly attenuated alcoholic liver injury in mice. RPS and SPS treatments protected gut functions by significantly enhancing the expression of tight-junction proteins and suppressing inflammatory responses. RPS and SPS treatments also significantly increased Lactobacillus reuteri and Roseburia spp. and decreased the level of Escherichia. Microbial metabolites, especially propionate and butyrate, were also increased in RPS- and SPS-treated mice. Correlation analysis revealed that the beneficial effects of RPS and SPS were strongly correlated with the microbiota composition and SCFAs. These results indicated that oyster polysaccharides alleviated alcoholic liver injury by mediating the gut-liver-metabolite axis, and the steaming process had little influence on the bioactivity.


Assuntos
Produtos Biológicos/uso terapêutico , Crassostrea/química , Microbioma Gastrointestinal , Hepatopatias Alcoólicas/tratamento farmacológico , Polissacarídeos/uso terapêutico , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/farmacologia , Butiratos/metabolismo , Escherichia/metabolismo , Escherichia/patogenicidade , Lactobacillus/metabolismo , Lactobacillus/patogenicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Propionatos/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
16.
Biomed Pharmacother ; 135: 111235, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33561650

RESUMO

INTRODUCTION: Liver diseases are currently common disorders worldwide. Especially, the proportion of patients with nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) is growing globally. An increasing number of studies have revealed a close relationship between the intestinal microbiota and the development of NAFLD and ALD. A better understanding of the role of intestinal microbiota and the intestine-liver axis thus might lead to the development novel therapies for the treatment of these diseases.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Intestinos/microbiologia , Hepatopatias Alcoólicas/microbiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Dieta Saudável , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia , Prebióticos , Probióticos/uso terapêutico
17.
Eur J Clin Nutr ; 75(8): 1227-1236, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33514869

RESUMO

BACKGROUND: The present study aims to investigate the effect of Lactobacillus casei on lipid metabolism and intestinal microflora in patients with alcoholic liver injury. METHODS: In a double-blind randomized controlled trial, 158 recruited alcoholic liver injury patients were randomized to three treatments for 60 days: low-dose group (LP, n = 58, 100 ml of Lactobacillus casei strain Shirota (LcS)), high-dose group (HP, n = 54, 200 ml of LcS), and positive control group (PC, n = 46, 100 ml of special drinks without active Lactobacillus casei). Another group of 20 healthy people was served as normal control group (NC). RESULTS: The serum levels of TG and LDLC in the HP group were significantly decreased by 26.56% and 23.83%, respectively than those in the PC group (P < 0.05). After supplementation of Lactobacillus casei, there was a significant increase in the amount of Lactobacillus and Bifidobacterium when compared with the PC group (P < 0.05). CONCLUSIONS: Supplementation of Lactobacillus casei can improve lipid metabolism and regulate intestinal flora disorders in patients with alcoholic liver injury.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Probióticos , Humanos , Fígado , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia
18.
Int J Biol Sci ; 17(1): 307-327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390852

RESUMO

Uncovering the intricacies of the gut microbiome and how it interacts with the host immune system has opened up pathways in the search for the treatment of disease conditions. Alcohol-associated liver disease is a major cause of death worldwide. Research has shed light on the breakdown of the protective gut barriers, translocation of gut microbes to the liver and inflammatory immune response to microbes all contributing to alcohol-associated liver disease. This knowledge has opened up avenues for alternative therapies to alleviate alcohol-associated liver disease based on the interaction of the commensal gut microbiome as a key player in the regulation of the immune response. This review describes the relevance of the intestinal immune system, the gut microbiota, and specialized and non-specialized intestinal cells in the regulation of intestinal homeostasis. It also reflects how these components are altered during alcohol-associated liver disease and discusses new approaches for potential future therapies in alcohol-associated liver disease.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal/imunologia , Hepatopatias Alcoólicas/imunologia , Animais , Disbiose/terapia , Homeostase , Humanos , Mucosa Intestinal/microbiologia , Fígado/imunologia , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/prevenção & controle
19.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008852

RESUMO

Chronic liver disease encompasses diseases that have various causes, such as alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation plays a key role in the pathogenesis of ALD and NAFLD through the gut-liver axis. The gut microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides, and hormones, continually shaping the host's immunity and metabolism. The integrity of the intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver inflammation and fibrosis. In this review, we introduce the metabolites and components derived from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in molecular-based therapeutics and novel mechanistic findings associated with the gut-liver axis in ALD and NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Metaboloma , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Disbiose/microbiologia , Disbiose/terapia , Humanos , Hepatopatias Alcoólicas/terapia , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/terapia
20.
J Agric Food Chem ; 69(1): 183-197, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33353302

RESUMO

Health and wellbeing are significantly impaired by alcoholic liver disease (ALD), and although some lactic acid bacteria strains have been shown previously to relieve ALD symptoms, the mechanisms behind these effects are still unclear. Here, the Lieber-DeCarli liquid diet containing alcohol was fed to C57BL/6J mice for 6 weeks to build a chronic alcoholic liver lesion model to study the protective effects and possible mechanisms of Lactobacillus mixture (Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901). The results showed that Lactobacillus mixture improved intestinal epithelial permeability and reduced the serum lipopolysaccharide (LPS) levels. Furthermore, Lactobacillus mixture inhibited liver lipid accumulation, oxidative stress, and inflammation by regulating AMPK, Nrf-2, and TLR4/NF-κB pathways. Importantly, the Lactobacillus mixture modulated the gut microbiota, resulting in increased short-chain fatty acid (SCFA) producers and decreased Gram-negative bacteria. Taken together, these findings indicated that the Lactobacillus mixture could positively regulate the gut microbiota, causing increased levels of SCFAs, which inhibited alcohol-induced liver lipid accumulation and oxidative stress through the gut-liver axis. Moreover, following administration of the Lactobacillus mixture, the improvement of intestinal epithelial permeability and the reduction of Gram-negative bacteria led to the decrease of LPS entering the portal vein, thereby inhibiting alcohol-induced liver inflammation.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus acidophilus/fisiologia , Lactobacillus plantarum/fisiologia , Hepatopatias Alcoólicas/prevenção & controle , Fígado/efeitos dos fármacos , Probióticos/administração & dosagem , Substâncias Protetoras/administração & dosagem , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...